

Professor Alan Smith
Director Mullard Space Science Laboratory
University College London
alan.smith@ucl.ac.uk

The Transparency of the Atmosphere

	γ-ray	X-ray	UV	Visible	NIR	FIR	
Scintillator							
Calorimeter							
MCP							
CCD, CMOS							
ICCD, IAPS							

BOLD

STJs

Bolometers

Photodiodes

Heterodyne

Radiometers

Semiconductors

Coherent detector

Technological Challenges

Some specific environmental challenges

- Launch vibration and shock
- Thermal balance
- Ionizing radiation
- Stray-light
- Micro-vibration
- Contamination

When do things fail?

The Butterfly Nebula From NASA's HST Wide Field Optical Camera

ESA's GAIA - launched 19 Dec 2013

A space mission to measure with unprecedented accuracy the position and radial velocity of 1,000,000,000 stars – to create the first 3-D map of our galaxy

To understand how our galaxy formed and how it will evolve

Case Study – Gaia CCDs

Largest focal plane flown in space

106 CCDs ~ 10⁹ pixels

Manufacturing

CCD production is highly process driven

Industry productivity demands high yield from a

many stage process

 Process oversight and KIPs (facility and device) are essential

CCD wafer
Lawrence Berkeley
National Labs

Qualification

UCL

Progress towards qualification

1 regress towards quantitation									
Lifecycle event	Requirement	Concept Definition	Design prediction	Breadboard	Engineering Model	Qualification			
TRL			3	4	5	6			
Charge transfer efficiency	99.998 %	99.9995	99.999	99.9975	99.9983	99.9987			
Readout noise	3 e-	2.5 e ⁻	2.6 e ⁻	4.5 e ⁻	3.9 e ⁻	3.6 e⁻			
Peak Quantum efficiency	88 %	92 %	90 %	86 %	88 %	89 %			
					T				
Test									

Analysis

- Normally performed through a process of abstraction and modelling
 - Electrical as in electronics
 - Electronic as in electron mobility
 - Thermal
 - Structural
 - Contamination
 - **–** ...

Integrate analysis and modelling up through the system hierarchy

Test

- Test everything that can be tested and test at every level of integration
- Test and analysis must concur

Test facility used for GAIA CCDs at MSSL

Beyond Test

- Characterise and understand the underlying physics of the devices
 - => predict performance in novel situations
 - => optimise
 - => deal with issues seen in flight
 - => understand the data better

Robust and Resilient

- Robust
 - Demonstrated design margins
 - Management of use through:
 - usage strategies
 - usage budgets
- Resilience
 - Redundancy
 - Re-programmable, flexible
 - Re-configurable

